An Adaptive Greedy Algorithm with Application to Sparse Narma Identification
نویسندگان
چکیده
Greedy algorithms form an essential tool for compressed sensing. However, their inherent batch mode discourages their use in time-varying environments due to significant complexity and storage requirements. In this paper a powerful greedy scheme developed in [1, 2] is converted into an adaptive algorithm which is applied to estimation of nonlinear channels. Performance is assessed via computer simulations on a variety of linear and nonlinear channels; all confirm significant improvements over conventional methods.
منابع مشابه
Speech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملFitting the Three-parameter Weibull Distribution by using Greedy Randomized Adaptive Search Procedure
The Weibull distribution is widely employed in several areas of engineering because it is an extremely flexible distribution with different shapes. Moreover, it can include characteristics of several other distributions. However, successful usage of Weibull distribution depends on estimation accuracy for three parameters of scale, shape and location. This issue shifts the attentions to the requ...
متن کاملA hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کاملAdaptive control of nonlinear multivariable systems using neural networks
This paper considers the problem of using approximate methods for realizing the neural controllers for nonlinear multivariable systems. In [1] the NARMA-L1 and NARMA-L2 models were introduced as approximations of he NARMA model used for the representation of a SISO nonlinear dynamical systems. The advantage obtained from using NARMA-L1 and NARMA-L2 models is that control input u(k) occurs linea...
متن کاملUsing Greedy Randomize Adaptive Search Procedure for solve the Quadratic Assignment Problem
Greedy randomize adaptive search procedure is one of the repetitive meta-heuristic to solve combinatorial problem. In this procedure, each repetition includes two, construction and local search phase. A high quality feasible primitive answer is made in construction phase and is improved in the second phase with local search. The best answer result of iterations, declare as output. In this stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010